系统进行视频车辆检测,需要具备很高的处理速度并采用的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法正确检测到行驶速度较快的车辆,同时也难以在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。
字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,后选佳匹配作为结果。基于人工神经元网络的算法有两种:一种是先对待识别字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。
车牌识别系统在停车场中能够起到很大的作用,有助于推动停车场收入,特别是对丁一些机动型用户来说,能够随时释放山停车位,加大停车的梳动量。基丁停车场的车牌识别系统是一个基于视频监控和门禁系统合二为一的平台。该平台不仅允许终端用户查看视频信息,也可以让他们拉制摄像头,让系统抓拍到车牌信息后方可进入停车,停车费用明细可Web访问获取信息。